H^1-Estimates of the Littlewood-Paley and Lusin Functions for Jacobi Analysis Ⅱ
H^1-Estimates of the Littlewood-Paley and Lusin Functions for Jacobi Analysis Ⅱ作者机构:Department of Mathematics Keio University at SFC Endo Fujisawa Kanagawa252-8520 Japan
出 版 物:《Analysis in Theory and Applications》 (分析理论与应用(英文刊))
年 卷 期:2016年第32卷第1期
页 面:38-51页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:partly supported by Grant-in-Aid for Scientific Research (C) No.24540191 Japan Society for the Promotion of Science
主 题:Jacobi analysis Jacobi hypergroup g function area function real Hardy space.
摘 要:Abstract. Let (R+,*,A) be the Jacobi hypergroup. We introduce analogues of the Littlewood-Paley g function and the Lusin area function for the Jacobi hypergroup and consider their (H^1, L^1 ) boundedness. Although the g operator for (R+,*,A) possesses better property than the classical g operator, the Lusin area operator has an obstacle arisen from a second convolution. Hence, in order to obtain the (H^1,L^1) estimate for the Lusin area operator, a slight modification in its form is required.