咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Research on Machine Tool Fault... 收藏

Research on Machine Tool Fault Diagnosis and Maintenance Optimization in Intelligent Manufacturing Environments

作     者:Feiyang Cao 

作者机构:Zhengzhou Business UniversityZhengzhou 451200China 

出 版 物:《Journal of Electronic Research and Application》 (电子研究与应用)

年 卷 期:2024年第8卷第4期

页      面:108-114页

学科分类:0711[理学-系统科学] 07[理学] 08[工学] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 071102[理学-系统分析与集成] 081103[工学-系统工程] 

主  题:Intelligent manufacturing Machine tool fault diagnosis Predictive maintenance Big data Machine learning System integration 

摘      要:In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational *** maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing ***,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool ***,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine ***,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing ***,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing *** study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分