咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >An artificial neural network b... 收藏

An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations

作     者:Abhishek MISHRA Cosmin ANITESCU Pattabhi Ramaiah BUDARAPU Sundararajan NATARAJAN Pandu Rang VUNDAVILLI Timon RABCZUK 

作者机构:School of Mechanical SciencesIndian Institute of TechnologyBhubaneswar 752050India Institute of Structural MechanicsBauhaus University of WeimarWeimar 99423Germany Department of Mechanical EngineeringIndian Institute of Technology MadrasChennai 600036India 

出 版 物:《Frontiers of Structural and Civil Engineering》 (结构与土木工程前沿(英文版))

年 卷 期:2024年第18卷第8期

页      面:1296-1310页

核心收录:

学科分类:08[工学] 081402[工学-结构工程] 081304[工学-建筑技术科学] 0813[工学-建筑学] 0814[工学-土木工程] 

基  金:the funds from the Department of Science and Technology(DST) Science and Engineering Research Board(SERB) India(No.SRG/2019/001581) 

主  题:collocation method artificial neural networks deep machine learning Sine-Gordon equation transient wave equation dynamic scalar and elasto-dynamic equation Runge-Kutta method 

摘      要:A combined deep machine learning(DML)and collocation based approach to solve the partial differential equations using artificial neural networks is *** developed method is applied to solve problems governed by the Sine–Gordon equation(SGE),the scalar wave equation and *** methods are studied:one is a space-time formulation and the other is a semi-discrete method based on an implicit Runge–Kutta(RK)time *** methodology is implemented using the Tensorflow framework and it is tested on several numerical *** on the results,the relative normalized error was observed to be less than 5%in all cases.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分