On the Well-Posedness Problem of the Anisotropic Porous Medium Equation with a Variable Diffusion Coefficient
作者机构:School of Mathematics and StatisticsXiamen University of TechnologyXiamen 361024China
出 版 物:《Journal of Partial Differential Equations》 (偏微分方程(英文版))
年 卷 期:2024年第37卷第2期
页 面:135-149页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by Natural Science Foundation of Fujian Province(No.2022J011242) China
主 题:Anisotropic porous medium equation variable diffusion coefficient stability partial boundary condition
摘 要:The initial-boundary value problem of an anisotropic porous medium equation■is *** with the usual porous medium equation,there are two different characteristics in this *** lies in its anisotropic property,another one is that there is a nonnegative variable diffusion coefficient a(x,t)*** a(x,t)may be degenerate on the parabolic boundary∂Ω×(0,T),instead of the boundedness of the gradient|∇u|for the usual porous medium,we can only show that∇u∈L^(∞)(0,T;L^(2)_(loc)(Ω)).Based on this property,the partial boundary value conditions matching up with the anisotropic porous medium equation are discovered and two stability theorems of weak solutions can be proved naturally.