咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >On the Well-Posedness Problem ... 收藏

On the Well-Posedness Problem of the Anisotropic Porous Medium Equation with a Variable Diffusion Coefficient

作     者:ZHAN Huashui ZHAN Huashui

作者机构:School of Mathematics and StatisticsXiamen University of TechnologyXiamen 361024China 

出 版 物:《Journal of Partial Differential Equations》 (偏微分方程(英文版))

年 卷 期:2024年第37卷第2期

页      面:135-149页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by Natural Science Foundation of Fujian Province(No.2022J011242) China 

主  题:Anisotropic porous medium equation variable diffusion coefficient stability partial boundary condition 

摘      要:The initial-boundary value problem of an anisotropic porous medium equation■is *** with the usual porous medium equation,there are two different characteristics in this *** lies in its anisotropic property,another one is that there is a nonnegative variable diffusion coefficient a(x,t)*** a(x,t)may be degenerate on the parabolic boundary∂Ω×(0,T),instead of the boundedness of the gradient|∇u|for the usual porous medium,we can only show that∇u∈L^(∞)(0,T;L^(2)_(loc)(Ω)).Based on this property,the partial boundary value conditions matching up with the anisotropic porous medium equation are discovered and two stability theorems of weak solutions can be proved naturally.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分