基于擦除和生成式模型的情感可解释性分析
Interpretability of Sentiment Based on Erasure and Generative Models作者机构:苏州大学计算机科学与技术学院江苏苏州215006
出 版 物:《中文信息学报》 (Journal of Chinese Information Processing)
年 卷 期:2024年第38卷第7期
页 面:158-164页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:情感可解释性分析是近年来比较新颖的研究方向,其目标是在预测文本的情感极性的同时给出决定情感极性的证据片段。该文在仅有情感分类任务数据集的基础上,提出了基于擦除的情感可解释性片段抽取方法,通过被擦除单词对情感极性逻辑判断的波动影响来决定证据的抽取。随后,利用擦除的方法使用模型对公开情感分析数据集中的部分数据进行片段抽取并人工过滤得到有监督数据,再使用T5序列生成式模型进行有监督训练,从而进一步提升证据抽取的性能。最终在“百度2022语言与智能技术竞赛:情感可解释评测中获得第三名的成绩。