High matrix metalloproteinase-9 expression induces angiogenesis and basement membrane degradation in stroke-prone spontaneously hypertensive rats after cerebral infarction
High matrix metalloproteinase-9 expression induces angiogenesis and basement membrane degradation in stroke-prone spontaneously hypertensive rats after cerebral infarction作者机构:Department of Pathology the First Affiliated Hospital of Medical School of Xi’an Jiaotong University
出 版 物:《Neural Regeneration Research》 (中国神经再生研究(英文版))
年 卷 期:2014年第9卷第11期
页 面:1154-1162页
核心收录:
学科分类:1002[医学-临床医学] 100204[医学-神经病学] 10[医学]
基 金:supported by the China Medical Board Project No.82-143
主 题:nerve regeneration cerebral infarction matrix metalloproteinase-9 collagen IV microvessel density angiogenesis basement membrane degradation high sodium stroke-pronespontaneously hypertensive China Medical Board Project neural regeneration
摘 要:Basement membrane degradation and blood-brain barrier damage appear after cerebral infarc- tion, severely impacting neuronal and brain functioning; however, the underlying pathogenetic mechanisms remain poorly understood. In this study, we induced cerebral infarction in stroke- prone spontaneously hypertensive rats by intragastric administration of high-sodium water (1.3% NaC1) for 7 consecutive weeks. Immunohistochemical and immunofluorescence assays demonstrated that, compared with the non-infarcted contralateral hemisphere, stroke-prone spontaneously hypertensive rats on normal sodium intake and Wistar-Kyoto rats, matrix metalloproteinase-9 expression, the number of blood vessels with discontinuous collagen IV expression and microvessel density were significantly higher, and the number of continuous collagen IV-positive blood vessels was lower in the infarct border zones of stroke-prone sponta- neously hypertensive rats given high-sodium water. Linear correlation analysis showed matrix metalloproteinase-9 expression was positively correlated with the number of discontinuously collagen IV-labeled blood vessels and microvessel density in cerebral infarcts of stroke-prone spontaneously hypertensive rats. These results suggest that matrix metalloproteinase-9 upregula- tion is associated with increased regional angiogenesis and degradation of collagen IV, the major component of the basal lamina, in stroke-prone spontaneously hypertensive rats with high-sodi- um water-induced focal cerebral infarction.