咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Some Limit Theorems for a Part... 收藏

Some Limit Theorems for a Particle System of Single Point Catalytic Branching Random Walks

Some Limit Theorems for a Particle System of Single Point Catalytic Branching Random Walks

作     者:Vladimir VATUTIN Jie XIONG 

作者机构:Steklov Mathematical Institute Gubkin street 8 119991 Moscow Russia Department of Mathematics University of Tennessee Knoxville TN 37996 1300 USA Department of Mathematics Hebei Normal University Shijiazhuang 050016 P. R. China 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2007年第23卷第6期

页      面:997-1012页

核心收录:

学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学] 

基  金:DFG grants RFBR 02-01-00266 Russian Scientific School 1758.2003.1 NSA Alexander von Humboldt Foundation 

主  题:Renewal equation branching particle system scaling limit 

摘      要:We study the scaling limit for a catalytic branching particle system whose particles perform random walks on Z and can branch at 0 only. Varying the initial (finite) number of particles, we get for this system different limiting distributions. To be more specific, suppose that initially there are n^β particles and consider the scaled process Zt^n(·) = Znt(√n·), where Zt is the measure-valued process 1 and to a representing the original particle system. We prove that Ztn converges to 0 when β 〈1/4 and to a nondegenerate discrete distribution when β=1/*** addition,if 1/4〈β〈1/2 then n-^(2β-1/2)Zt^n converges to a random limit,while if β 〉21then n^-βZtn converges to a deterministic limit.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分