Some Limit Theorems for a Particle System of Single Point Catalytic Branching Random Walks
Some Limit Theorems for a Particle System of Single Point Catalytic Branching Random Walks作者机构:Steklov Mathematical Institute Gubkin street 8 119991 Moscow Russia Department of Mathematics University of Tennessee Knoxville TN 37996 1300 USA Department of Mathematics Hebei Normal University Shijiazhuang 050016 P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2007年第23卷第6期
页 面:997-1012页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:DFG grants RFBR 02-01-00266 Russian Scientific School 1758.2003.1 NSA Alexander von Humboldt Foundation
主 题:Renewal equation branching particle system scaling limit
摘 要:We study the scaling limit for a catalytic branching particle system whose particles perform random walks on Z and can branch at 0 only. Varying the initial (finite) number of particles, we get for this system different limiting distributions. To be more specific, suppose that initially there are n^β particles and consider the scaled process Zt^n(·) = Znt(√n·), where Zt is the measure-valued process 1 and to a representing the original particle system. We prove that Ztn converges to 0 when β 〈1/4 and to a nondegenerate discrete distribution when β=1/*** addition,if 1/4〈β〈1/2 then n-^(2β-1/2)Zt^n converges to a random limit,while if β 〉21then n^-βZtn converges to a deterministic limit.