Incidence Colorings of Powers of Circuits
Incidence Colorings of Powers of Circuits作者机构:Department of Mathematics Capital Normal University Beijing 100037 China LMIB and Department of Mathematics Beihang University Beijing 100083 China
出 版 物:《Chinese Quarterly Journal of Mathematics》 (数学季刊(英文版))
年 卷 期:2010年第25卷第2期
页 面:159-167页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by NSFC(10201022,10571124,10726008) Supported by SRCPBMCE(KM200610028002) Supported by BNSF(1012003)
主 题:incidence coloring circuit powers partition
摘 要:The incidence chromatic number of G is the least number of colors such that G has an incidence coloring. It is proved that the incidence chromatic number of Cn^p, the p-th power of the circuit graph, is 2p + 1 if and only if n = k(2p + 1), for other cases: its incidence chromatic number is at most 2p + [r/k] + 2, where n = k(p + 1) + r, k is a positive integer. This upper bound is tight for some cases.