融合注意力的主动迭代优化白细胞图像分类模型
Active Iterative Optimization of Leukocyte Image Classification Model with Fused Attention作者机构:四川大学电气工程学院成都610065
出 版 物:《中国生物医学工程学报》 (Chinese Journal of Biomedical Engineering)
年 卷 期:2024年第43卷第4期
页 面:408-418页
核心收录:
学科分类:0831[工学-生物医学工程(可授工学、理学、医学学位)] 08[工学] 0836[工学-生物工程]
基 金:四川省科技计划项目(23ZDYF2913) 德阳科技(揭榜)项目(2021JBJZ007) 智能电网四川省重点实验室应急重点项目(020IEPG-KL-20YJ01)
主 题:主动学习 白细胞 主动迭代扩增 LossNet 医学图像分类
摘 要:白细胞的数量和结构特征蕴含了人类健康状况的重要信息。通过对不同种类的白细胞进行计数,可为多种疾病的早期治疗提供重要依据。但目前采集与标注白细胞数据集成本较高、现有的白细胞数据集数量较少,给计算机辅助白细胞自动分类带来了挑战。为此,本研究提出了一种融合注意力的主动迭代优化白细胞图像分类模型,通过在ResNet18主干网络上附加用于主动学习的LossNet网络,从大量未标注样本中挑选最具代表性的样本进行标注,减少了需要人工标注的样本量。同时,为了应对白细胞数据集类间不平衡对主动学习的影响,加入主动迭代扩增模块,挑选训练过程中的困难样本进行含有随机因子的数据扩增,自下而上形成了双向的信息交互,以增强模型对不平衡数据集的适应力。最终,在比较了3种注意力模块后,本研究选择加入CBAM注意力模块,以增强模型对白细胞特征区域的关注、提高模型的性能。采用包含14514张白细胞显微镜图像的Raabin-WBC数据集进行方法验证。实验结果表明,所提出的模型在使用训练集28%、37%、52%的样本时,分类准确率分别达到92.35%、93.64%、94.86%,相比原ResNet18分别提升了5.14%、9.24%、2.37%,模型有效降低了白细胞数据集的标注成本,在缺乏标注的医学数据集上具有较为广泛的应用前景。