Global robust stability of complex-valued recurrent neural networks with time-delays and uncertainties
Global robust stability of complex-valued recurrent neural networks with time-delays and uncertainties作者机构:College of Computer Science Chongqing UniversityChongqing 400044 P. R. China Department of MathematicsTexas A &M University at Qatar Qatar
出 版 物:《International Journal of Biomathematics》 (生物数学学报(英文版))
年 卷 期:2014年第7卷第2期
页 面:79-102页
核心收录:
学科分类:0711[理学-系统科学] 12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 071102[理学-系统分析与集成] 081103[工学-系统工程]
主 题:Gomplex-valued recurrent neural networks robust stability global asymp-totical stability.
摘 要:This paper focuses on the existence, uniqueness and global robust stability of equilibrium point for complex-valued recurrent neural networks with multiple time-delays and under parameter uncertainties with respect to two activation functions. Two sufficient conditions for robust stability of the considered neural networks are presented and established in two new time-independent relationships between the network parameters of the neural system, Finally, three illustrative examples are given to demonstrate the theoretical results.