基于GA-BP神经网络的鲅鱼鲜味肽美拉德反应增鲜研究
Maillard reaction freshening of Spanish mackerel umami peptides based on GA-BP neural network作者机构:山东理工大学农业工程与食品科学学院山东淄博255000 淄川区检验检测中心山东淄博255100 济南市章丘区综合检验检测中心山东济南250200 三奇生物医药(山东)有限公司山东日照276800
出 版 物:《南方农业学报》 (Journal of Southern Agriculture)
年 卷 期:2024年第55卷第6期
页 面:1733-1743页
学科分类:0832[工学-食品科学与工程(可授工学、农学学位)] 08[工学] 083204[工学-水产品加工及贮藏工程]
基 金:山东省重大科技创新工程项目(2022CXGC020414)
主 题:鲅鱼 美拉德反应 GA-BP神经网络 氨基酸 鲜味肽
摘 要:【目的】建立遗传算法(GA)与多层前馈神经网络算法(BP神经网络)预测模型,优化鲅鱼副产物鲜味肽美拉德反应过程中的关键参数,为研制鲅鱼调味品及促进鲅鱼资源的绿色加工利用提供参考依据。【方法】以鲅鱼副产物为原料,加入适量D-木糖进行美拉德反应增鲜,采用单因素试验分别考察D-木糖质量浓度、初始pH、反应时间和反应温度对反应产物褐变值(A420 nm)、最终pH和感官评分的影响;在此基础上,建立以D-木糖质量浓度、初始pH、反应温度和反应时间为输入层,以产物的感官评分为输出层的BP神经网络,并利用GA进行寻优;通过氨基酸分析,对比美拉德反应前后氨基酸变化,分析鲜味的变化情况。【结果】单因素试验结果显示,当D-木糖质量浓度为40 g/L、初始pH为6.0、反应时间为90 min、反应温度为120℃时,鲅鱼副产物鲜味肽A420 nm、最终pH和感官评分达最佳。使用69组样本对GA-BP神经网络模型进行7次迭代后,均方误差(MSE)达最小值0.005287,样本相关系数(R)最大值为0.98317,得到准确度最优的拟合模型;使用18组样本对模型进行验证分析后发现,18组样本的R=0.98787,表明建立的GA-BP神经网络模型可很好地预测不同工艺参数下美拉德反应结果;使用该模型得到最佳工艺条件:D-木糖质量浓度36 g/L、初始pH 5.4、反应时间70 min、反应温度119℃,在此条件下,鲜味肽的感官评分为9.58分,与预测值(9.62分)接近。鲅鱼副产物鲜味肽的水解氨基酸经美拉德反应后,鲜味氨基酸含量增加,特别是谷氨酸含量从56.21 mg/g增至70.39 mg/g,提高25.23%;甜味氨基酸含量从103.98 mg/g增至155.64 mg/g,提高49.68%;而游离氨基酸在美拉德反应后大部分降低,损失率为27.76%。【结论】基于GA-BP神经网络模型优化的美拉德反应增鲜工艺,可明显提升鲅鱼副产物鲜味肽的鲜味特征。