咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A parallel and scalable digita... 收藏

A parallel and scalable digital architecture for training support vector machines

A parallel and scalable digital architecture for training support vector machines

作     者:Kui-kang CAO Hai-bin SHEN Hua-feng CHEN 

作者机构:Institute of VLSI Design Zhejiang University Hangzhou 310027 China Zhejiang University of Media and Communications Hangzhou 310027 China 

出 版 物:《Journal of Zhejiang University-Science C(Computers and Electronics)》 (浙江大学学报C辑(计算机与电子(英文版))

年 卷 期:2010年第11卷第8期

页      面:620-628页

核心收录:

学科分类:080902[工学-电路与系统] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 

基  金:Project (No.60720106003) supported by the National Natural Science Foundation of China 

主  题:Support vector machine (SVM) Sequential minimal optimization (SMO) Field-programmable gate array (FPGA) Scalable architecture 

摘      要:To facilitate the application of support vector machines (SVMs) in embedded systems,we propose and test a parallel and scalable digital architecture based on the sequential minimal optimization (SMO) algorithm for training *** taking advantage of the mature and popular SMO algorithm,the numerical instability issues that may exist in traditional numerical algorithms are *** error cache updating task,which dominates the computation time of the algorithm,is mapped into multiple processing units working in *** results show that using the proposed architecture,SVM training problems can be solved effectively with inexpensive fixed-point arithmetic and good scalability can be *** architecture overcomes the drawbacks of the previously proposed SVM hardware that lacks the necessary flexibility for embedded applications,and thus is more suitable for embedded use,where scalability is an important concern.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分