咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Bi-Hamiltonian Structure of a ... 收藏

Bi-Hamiltonian Structure of a Third-Order Nonlinear Evolution Equation on Plane Curve Motions

Bi-Hamiltonian Structure of a Third-Order Nonlinear Evolution Equation on Plane Curve Motions

作     者:REN Wen-Xiu Alatancang 

作者机构:Department of Mathematics Inner Mongolia University Hohhot 010021 China Department of Mathematics Inner Mongolia University of Technology Hohhot 010051 China 

出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))

年 卷 期:2007年第48卷第2X期

页      面:211-214页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:The project supported by National Natural Science Foundation of China under Grant No. 10562002 and the Natural Science Foundation of Inner Mongolia under Grant No. 200508010103 

主  题:nonlinear evolution equation bi-Hamiltonian structure hereditary operator integrability 

摘      要:In the present paper, we identify the integrability of the third-order nonlinear evolution equation ut = (1/2)((uxz + u)^-2)z in a Hamiltonian viewpoint. We prove that the recursion operator obtained by ***. Sakovich is hereditary, and then deduce a bi-Hamiltonian structure of the equation by using some decomposition of the hereditary operator. A hierarchy associated to the equation is also shown.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分