A fiducial approach to the nonparametric deconvolution problem:The discrete case
作者机构:Center for Data ScienceZhejiang UniversityHangzhou 310058China Department of Statistics and Operations ResearchUniversity of North Carolina at Chapel HillChapel HillNC 27599USA
出 版 物:《Science China Mathematics》 (中国科学(数学英文版))
年 卷 期:2024年第67卷第11期
页 面:2653-2670页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:supported by National Natural Science Foundation of China(Grant No.U23A2064) Singapore Ministry of Education U.S.National Institute of Health U.S.National Science Foundation
主 题:confidence intervals empirical Bayes fiducial inference nonparametric deconvolution
摘 要:Fiducial inference is applied to nonparametric g-modeling in the discrete *** propose a computationally efficient algorithm to sample from the fiducial distribution and use the generated samples to construct point estimates and confidence *** study the theoretical properties of the fiducial distribution and perform extensive simulations in various *** proposed approach gives rise to good statistical performance in terms of the mean squared error of point estimators and coverage of confidence ***,we apply the proposed fiducial method to estimate the probability of each satellite site being malignant using gastric adenocarcinoma data with 844 patients.