基于薄云雾去除的ETM+影像大气校正
Atmospheric correction for ETM+ image based on thin cloud removal作者机构:江苏省农业科学院农业经济与信息所南京210014 中国矿业大学环境与测绘学院徐州221116 国家农业信息化工程技术研究中心北京100089
出 版 物:《农业工程学报》 (Transactions of the Chinese Society of Agricultural Engineering)
年 卷 期:2013年第29卷第A1期
页 面:82-88页
核心收录:
学科分类:083002[工学-环境工程] 0830[工学-环境科学与工程(可授工学、理学、农学学位)] 08[工学] 09[农学] 0804[工学-仪器科学与技术] 0903[农学-农业资源与环境] 0816[工学-测绘科学与技术] 081602[工学-摄影测量与遥感] 081102[工学-检测技术与自动化装置] 0811[工学-控制科学与工程]
基 金:国家自然科学基金(41171336) 江苏省农业科技自主创新项目(CX-12-3054) 江苏省自然科学基金(BK2011684)
摘 要:中国南方农业遥感监测中,遥感影像常常受到薄云雾影响,大气的散射与吸收作用会使传感器接收到的地物反射率与真实值之间存在差距,是导致数据质量下降的主要原因,薄云雾去除和大气校正处理是十分必要的。该研究利用LandSat-7/ETM+影像,结合背景抑制云雾厚度因子(BSHTI)云检测方法和虚拟云点(VCP)云去除方法进行薄云雾去除,并与暗元法去云处理结果对比分析,然后将去云处理后的影像进行FLAASH大气校正,选取校正前后典型地物的光谱特征和NDVI值进行分析评价。结果表明,BSHTI-VCP法可有效消除薄云雾对遥感数据的影响,提高了云雾覆盖范围的影像质量;FLAASH大气校正较好地消除了大气影响,获得了地物真实地表反射率。该研究为南方作物遥感监测中定量反演与信息解译提供了良好理论支持。