EXPONENTIAL STABILITY OF LINEAR SYSTEMS IN BANACH SPACES
EXPONENTIAL STABILITY OF LINEAR SYSTEMS IN BANACH SPACES作者机构:Department of Mathematics Sichuan University Chengdu Sichuan China
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:1989年第10卷第3期
页 面:332-340页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:semigroup operators lemma exponential generator Lebesgue algebra holomorph integrable 一彻
摘 要:In this paper the author proves a new fundamental lemma of Hardy-Lebesgue class H2(σ) and by this lemma obtains some fundamental results of exponential stability of C0-semigroup of bounded linear operators in Banach spaces. Specially, if ωs=sup{Reλ; λ∈σ(A)}-1‖; Reλ≥σ}sup, 0) and A is the infinitesimal generator of a G0-semigroup etA in a Banach space X, then (a)integral from n=0 to ∞(e-σt|f(etAx)|f(etAx)|dt* and x∈X; (b) there exists M0 such that ‖etAx‖≤Neσt‖Ax‖, x∈D(A); (c) there exists a Banach space X such that ‖etAx‖≤eσt‖x‖, x∈X.