WELL-POSEDNESS FOR THE CAUCHY PROBLEM TO THE HIROTA EQUATION IN SOBOLEV SPACES OF NEGATIVE INDICES
WELL-POSEDNESS FOR THE CAUCHY PROBLEM TO THE HIROTA EQUATION IN SOBOLEV SPACES OF NEGATIVE INDICES作者机构:GraduateSchoolChinaAcademyofEngineeringPhysicsP.O.Box2101Beijing100088China AcademyofMathematicsandSystemSciencesChineseAcademyofSciencesBeijing100080China
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:2005年第26卷第1期
页 面:75-88页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Fourier restriction norm Trilinear estimates Hirota equation Low regularity Global well-posedness
摘 要:The local well-posedness of the Cauchy problem for the Hirota equation is established for low regularity data in Sobolev spaces Hs(s ≥ -1-4). Moreover, the global well-posedness for L2 data follows from the local well-posedness and the conserved quantity. For data in Hs(s 0), the global well-posedness is also proved. The main idea is to use the generalized trilinear estimates, associated with the Fourier restriction norm method.