咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Efficient fidelity estimation:... 收藏

Efficient fidelity estimation:alternative derivation and related applications

作     者:Diego S Starke Marcos L W Basso Jonas Maziero 

作者机构:Physics DepartmentCenter for Natural and Exact SciencesFederal University of Santa MariaRoraima Avenue 1000Santa MariaRS97105-900Brazil Center for Natural and Human SciencesFederal University of ABCAvenue of the StatesSanto AndréSão Paulo09210-580Brazil 

出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))

年 卷 期:2024年第76卷第9期

页      面:16-20页

核心收录:

学科分类:07[理学] 070201[理学-理论物理] 0702[理学-物理学] 

基  金:Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP National Institute for the Science and Technology of Quantum Information National Council for Scientific and Technological Development FAPESP, (2022/09496-8) CNPq, (309862/2021-3, 421792/2022-1, 409673/2022-6) Coordination for the Improvement of Higher Education Personnel, (88887.827989/2023-00) INCT-IQ, (465469/2014-0) 

主  题:Ulhmann–Jozsa fidelity Rényi entropy efficient fidelity estimation Chebyshev polynomials 

摘      要:In[***.A 107012427(2023)],Baldwin and Jones prove that Uhlmann–Jozsa’s fidelity between two quantum statesρandσ,i.e.,F(ρ,σ)=(Tr√√ρσ√ρ)^(2),can be written in a simplified form as F(ρ,σ)=(Tr√ρσ)^(2).In this article,we give an alternative proof of this result,using a function power series expansion and the properties of the trace *** approach not only reinforces the validity of the simplified expression but also facilitates the exploration of novel dissimilarity functions for quantum states and more complex trace functions of density operators.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分