Efficient fidelity estimation:alternative derivation and related applications
作者机构:Physics DepartmentCenter for Natural and Exact SciencesFederal University of Santa MariaRoraima Avenue 1000Santa MariaRS97105-900Brazil Center for Natural and Human SciencesFederal University of ABCAvenue of the StatesSanto AndréSão Paulo09210-580Brazil
出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))
年 卷 期:2024年第76卷第9期
页 面:16-20页
核心收录:
学科分类:07[理学] 070201[理学-理论物理] 0702[理学-物理学]
基 金:Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP National Institute for the Science and Technology of Quantum Information National Council for Scientific and Technological Development FAPESP, (2022/09496-8) CNPq, (309862/2021-3, 421792/2022-1, 409673/2022-6) Coordination for the Improvement of Higher Education Personnel, (88887.827989/2023-00) INCT-IQ, (465469/2014-0)
主 题:Ulhmann–Jozsa fidelity Rényi entropy efficient fidelity estimation Chebyshev polynomials
摘 要:In[***.A 107012427(2023)],Baldwin and Jones prove that Uhlmann–Jozsa’s fidelity between two quantum statesρandσ,i.e.,F(ρ,σ)=(Tr√√ρσ√ρ)^(2),can be written in a simplified form as F(ρ,σ)=(Tr√ρσ)^(2).In this article,we give an alternative proof of this result,using a function power series expansion and the properties of the trace *** approach not only reinforces the validity of the simplified expression but also facilitates the exploration of novel dissimilarity functions for quantum states and more complex trace functions of density operators.