Effect of Silicon Amendment on Growth and Nitrogen Status of Common Landscaping Plants
Effect of Silicon Amendment on Growth and Nitrogen Status of Common Landscaping Plants作者机构:Department of Earth and Environment Institute of Environment Florida International University Miami FL USA
出 版 物:《American Journal of Plant Sciences》 (美国植物学期刊(英文))
年 卷 期:2024年第15卷第8期
页 面:603-616页
学科分类:0710[理学-生物学] 071001[理学-植物学] 07[理学]
主 题:Silicon Application Chlorophyll Content Cocoplum Cabbage Palm Satinleaf Wild Coffee
摘 要:Agriculture and natural vegetations in South Florida face with significant environmental threats such as heat and saltwater intrusion. This study aimed to investigate how silicon application could improve growth parameters and plant health of landscaping plants under extreme temperatures, influenced by global climate changes. Cocoplum (Chrysobalanus icaco), cabbage palm (Sabal palmetto), satinleaf (Chrysophyllum oliviforme), and wild coffee (Psychotria nervosa) plants received an initial slow-release fertilizer of 15 g/pot with an 8N-3P-9K composition. Silicon was applied as a 1% silicic acid solution, with concentrations ranging from 0 g/pot to 6 g/pot of 7.5 L. Evaluations were carried out every 30 days, continuing until 180 days after the treatment was completed. Phenotypic traits, including leaf count and plant height, were assessed alongside measurements from handheld optical non-destructive sensors. These measurements included the normalized difference vegetation index (NDVI), SPAD-502, and atLEAF chlorophyll meters. Application of 4 g/pot and 6 g/pot of silicon significantly improved NDVI values (0.78). Conversely, cocoplum plants exhibited greater plant height (79.6) at 0 g/pot silicon compared to other treatments. In wild coffee samplings, the control group showed the highest plant height and SPAD readings (93.49) compared to other treatments. Interestingly, the control treatment also demonstrated a superior atLEAF value as compared to other treatments, while the tallest samplings were observed with 6 g/pot of silicon (62.82) in cabbage palm plants. The findings indicate that silicon application positively influenced plant growth, particularly evident in cabbage palms. However, cocoplum and wild coffee exhibited a negative correlation between plant height and silicon concentrations.