咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A Deep Learning Based Broadcas... 收藏

A Deep Learning Based Broadcast Approach for Image Semantic Communication over Fading Channels

作     者:Ma Kangning Shi Yuxuan Shao Shuo Tao Meixia Ma Kangning;Shi Yuxuan;Shao Shuo;Tao Meixia

作者机构:The Department of Electronic EngineeringShanghai Jiao Tong UniversityShanghai 200240China The School of Cyber and EngineeringShanghai Jiao Tong UniversityShanghai 200240China 

出 版 物:《China Communications》 (中国通信(英文版))

年 卷 期:2024年第21卷第7期

页      面:78-94页

核心收录:

学科分类:0810[工学-信息与通信工程] 12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 081001[工学-通信与信息系统] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported in part by the National Key R&D Project of China under Grant 2020YFA0712300 National Natural Science Foundation of China under Grant NSFC-62231022,12031011 supported in part by the NSF of China under Grant 62125108 

主  题:broadcast approach deep learning fading channels semantic communication 

摘      要:We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel *** combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)***,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this *** learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel *** simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分