一种基于YOLOX优化的轻量级路面病害检测方法
Light pavement disease detection method based on optimized YOLOX作者机构:江苏科技大学计算机学院镇江212000 江苏科技大学自动化学院镇江212000
出 版 物:《江苏科技大学学报(自然科学版)》 (Journal of Jiangsu University of Science and Technology:Natural Science Edition)
年 卷 期:2024年第38卷第3期
页 面:55-62页
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金项目(51008143) 江苏省六大高峰人才项目(XYDXX-117) 苏州科技大学苏州智慧城市研究院开放基金项目(SZSCR2019011)
主 题:路面病害检测 YOLOX GhostNet 注意力机制 深度融合模型 深度可分离卷积
摘 要:受限于小型嵌入式设备以及移动设备等有限的计算资源,大型网络模型难以部署在此类应用场景中.为了解决该问题,基于YOLOX提出一种高效的路面病害识别模型.首先,将YOLOX主干网络替换为优化后的GhostNet来减少网络计算参数,并参考基于卷积块注意力机制兼顾空间和通道方向上自适应调整信息的优势,构建DAM(Dimensional Attention Model)代替GhostBottleneck模块中的SE模块,从而充分利用有限的网络容量进行强化特征学习;其次,提出DFM(Deep Fusion Model)模块来改进PANet并以此对高低特征层进行深度融合,获取更加丰富的特征信息来提高检测能力;再次,采用Complete-IoU Loss来拟合更加准确的检测框位置,减少方向误判的同时提高了检测效率;最后,引入Image-Multitasking数据增强方法来强化目标图像任务性,提高了网络的泛化能力和鲁棒性.在RDD2020数据集上进行模型对比,实验表明,改进后的GhostNet-YOLOX网络的mAP达到84.05%,高于现有的YOLOX-s(即66.26%),模型参数量缩小至14.53 MB,小于YOLOX-s(即34.21 MB),同时实际检测视频的帧数达到了26 p·s^(-1),提高了5.88 p·s^(-1),检测实时性显著提高.