Oscillatory and Asymptotic Behaviour of Fourth Order Nonlinear Difference Equations
Oscillatory and Asymptotic Behaviour of Fourth Order Nonlinear Difference Equations作者机构:山西大学数学系 山西 太原 湖北师范大学数学系 湖北 黄石
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:1997年第13卷第1期
页 面:105-115页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Partially Supported by the National Science Foundation of China
主 题:Nonlinear difference equation Oscillation Asymptotic behaviour.
摘 要:This paper considers a class of fourth order nonlinear difference equations Δ2(rnΔ2yn)+ f(n,yn)=0,n∈N(n0),where f(n,y)may be classified as superlinear,sublinear,strongly super- linear and strongly *** superlinear and sublinear cases,necessary and sufficient conditions are obtained for the difference equation to admit the existence of nonoscillatory solutions with special asymptotic *** strongly superlinear and strongly sublinear cases,sufficient conditions are given for all solutions to be oscillatory.