Convergence rate of cross-validation in nonlinear wavelet regression estimation
Convergence rate of cross-validation in nonlinear wavelet regression estimation作者机构:Peking Univ Dept Probabil & Stat Beijing 100871 Peoples R China
出 版 物:《Chinese Science Bulletin》 (科学通报(英文版))
年 卷 期:1999年第44卷第10期
页 面:898-901页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:49775261 National Natural Science Foundation of China,NSFC Natural Science Foundation of Heilongjiang Province State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,LASG: 49823002
主 题:wavelet estimation nonparametric regression estimators cross-validation strong consistency.
摘 要:Cross-validation method is used to choose the three smoothing parameters in nonlin ear wavelet regression estimators. The strong consistency and convergence rate of cross-vali dation nonlinear wavelet regression estimators are obtained.