Explicit Convergence Rates of the Embedded M/G/1 Queue
Explicit Convergence Rates of the Embedded M/G/1 Queue作者机构:School of MathematicsCentral South University
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2007年第23卷第7期
页 面:1289-1296页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070105[理学-运筹学与控制论] 0701[理学-数学]
基 金:Supported by National Natural Science Foundation of China(No.10171009)
主 题:convergence rate Markov chains queues polynomial ergodicity geometric ergodicity
摘 要:This paper investigates the explicit convergence rates to the stationary distribution π of the embedded M/G/1 queue; specifically, for suitable rate functions r(n) which may be polynomial with r(n) = n^l, l 〉 0 or geometric with r(n) = α^n, a 〉 1 and "moments" f ≥ 1, we find the conditions under which Σ∞n=0 r(n)||P^n(i,·) - π(·)||f ≤ M(i) for all i ∈ E. For the polynomial case, the explicit bounds on M(i) are given in terms of both "drift functions" and behavior of the first hitting time on the state O; and for the geometric case, the largest geometric convergence rate α* is obtained.