咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Explicit Convergence Rates of ... 收藏

Explicit Convergence Rates of the Embedded M/G/1 Queue

Explicit Convergence Rates of the Embedded M/G/1 Queue

作     者:Yuan Yuan LIU Zhen Ting HOU 

作者机构:School of MathematicsCentral South University 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2007年第23卷第7期

页      面:1289-1296页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070105[理学-运筹学与控制论] 0701[理学-数学] 

基  金:Supported by National Natural Science Foundation of China(No.10171009) 

主  题:convergence rate Markov chains queues polynomial ergodicity geometric ergodicity 

摘      要:This paper investigates the explicit convergence rates to the stationary distribution π of the embedded M/G/1 queue; specifically, for suitable rate functions r(n) which may be polynomial with r(n) = n^l, l 〉 0 or geometric with r(n) = α^n, a 〉 1 and "moments" f ≥ 1, we find the conditions under which Σ∞n=0 r(n)||P^n(i,·) - π(·)||f ≤ M(i) for all i ∈ E. For the polynomial case, the explicit bounds on M(i) are given in terms of both "drift functions" and behavior of the first hitting time on the state O; and for the geometric case, the largest geometric convergence rate α* is obtained.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分