On the elliptic curve y^2=x^3-2r Dx and factoring integers
On the elliptic curve y^2=x^3-2r Dx and factoring integers作者机构:Department of Mathematical SciencesTsinghua University
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2014年第57卷第4期
页 面:719-728页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by National Natural Science Foundation of China (Grant No. 11271212)
主 题:elliptic curve integer factoring Selmer group
摘 要:Let D=pq be the product of two distinct odd *** the parity conjecture,we construct infinitely many r≥1 such that E2rD:y2=x3-2rDx has conjectural rank one and vp(x([k]Q))≠vq(x([k]Q))for any odd integer k,where Q is the generator of the free part of E(Q).Furthermore,under the generalized Riemann hypothesis,the minimal value of r is less than c log4 D for some absolute constant *** a corollary,one can factor D by computing the generator Q.