咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >IPFA-Net: Important Points Fea... 收藏

IPFA-Net: Important Points Feature Aggregating Net for Point Cloud Classification and Segmentation

作     者:Jingya WANG Yu ZHANG Bin ZHANG Jinxiang XIA Weidong WANG 

作者机构:School of Information and Software Engineering University of Electronic Science and Technology of China National Key Laboratory of Automotive Chassis Integration and Bionics Jilin University 

出 版 物:《Chinese Journal of Electronics》 (电子学报(英文))

年 卷 期:2024年

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the Sichuan Province Science and Technology Support Program (Grant No.2021YFQ0054) the open project fund of Intelligent Terminal Key Laboratory of Sichuan Province (2020-2021) (Grant No. SCITLAB-0012) 

摘      要:This paper focuses on the problems of point cloud deep neural networks in classification and segmentation tasks, including losing important information during down-sampling, ignoring relationships among points when extracting features, and network performance being susceptible to the sparsity of point cloud. To begin with, this paper proposes a farthest point sampling(FPS)-important points sampling(F-IPS) method for down-sampling, which can preserve important information of point clouds and maintain the geometry of input data. Then, the local feature relation aggregating(LFRA) method is proposed for feature extraction, improving the network s ability to learn contextual information and extract rich local region features. Based on these methods, the important points feature aggregating net(IPFA-Net) is designed for point cloud classification and segmentation tasks. Furthermore, this paper proposes the multi-scale multi-density feature connecting(MMFC) method to reduce the negative impact of point cloud data sparsity on network performance. Finally, the effectiveness of IPFA-Net is demonstrated through experiments on ModelNet40, ShapeNet part, and ScanNet v2 datasets. IPFA-Net is robust to reducing the number of point clouds, with only a 3.3% decrease in accuracy under a 16-fold reduction of point number. In the part segmentation experiments, our method achieves the best segmentation performance for five objects.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分