基于自组织神经网络的EVD杂波抑制算法
作者机构:西安电子科技大学雷达信号处理全国重点实验室 上海航天电子通讯设备研究所
出 版 物:《西安电子科技大学学报》 (Journal of Xidian University)
年 卷 期:2024年
核心收录:
学科分类:080904[工学-电磁场与微波技术] 12[管理学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0810[工学-信息与通信工程] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 081105[工学-导航、制导与控制] 081001[工学-通信与信息系统] 0835[工学-软件工程] 081002[工学-信号与信息处理] 0825[工学-航空宇航科学与技术] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金(62171336) 高等学校学科创新引智计划(111计划)(STAST2020086)
摘 要:强杂波环境下慢速运动目标的杂波抑制一直是雷达领域的研究难点,通过子空间分解法来抑制杂波是一种常用的方法,但传统子空间分解法依赖于过往经验选取杂波基、自适应性差。基于K-均值聚类的SVD杂波抑制算法弥补了上述缺陷,然而当慢速运动目标与杂波在多普勒谱上接近或混叠时,这种算法的特征集区分度大幅下降,聚类结果变得不稳定。为此提出了一种基于自组织神经网络的特征值分解(eigenvalue-decomposition, EVD)杂波抑制算法。首先,深入分析慢速运动目标和杂波、噪声的差异,利用回波信号矩阵特征值分解后得到的特征值和特征向量,提取针对慢速运动目标和杂波区分度高的特征来构建特征集。其次,采用受初始值影响小、聚类结果稳定的自组织神经网络进行聚类,自适应选取构造杂波子空间的杂波基,最后通过正交子空间投影来抑制杂波。仿真和实测数据结果表明该算法能有效抑制强静止杂波和慢速杂波,实现对慢速运动目标的检测,算法具有较强的稳健性和工程实用性。