基于SOM-FCM和KELM组合方法的短期光伏功率预测
Short-term PV power forecasting based on combined SOM-FCM and KELM method作者机构:兰州交通大学自动化与电气工程学院甘肃兰州730070
出 版 物:《Journal of Measurement Science and Instrumentation》 (测试科学与仪器(英文版))
年 卷 期:2024年第15卷第2期
页 面:204-215页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0807[工学-动力工程及工程热物理] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by National Natural Science Foundation of China(No.51467008) Gansu Provincial Department of Education Industry Support Program(No.2021CYZC-32)
主 题:光伏发电 功率预测 自组织映射神经网络 区域建模方法 优化的核极限学习机(KELM)方法
摘 要:为了提高短期光伏发电预测的精度,本文提出了一种将聚类后的自组织映射网络(SOM)与优化的核极值学习机(KELM)方法相结合的混合预测模型。首先,利用SOM来对训练数据集进行初始划分。然后,利用模糊C均值(FCM)对训练好的SOM网络进行聚类操作,同时利用Davies-Bouldin指数(DBI)来确定最佳聚类的大小。最后,在每个数据分区中,通过结合差分演化算法优化的KELM方法来建立区域KELM模型,或者结合最小二乘估计的多元线性回归(MR)方法来构建区域MR模型。此外,本文还提出了基于SOM的不同局部多元回归模型。将提出的结合SOM-FCM和KELM的混合预测模型分别应用于GEFCom2014三个不同太阳能电站,进行提前一小时的发电功率预测。与其他预测模型相比,光伏发电站1的平均绝对误差(MAE)降低了61.41%,光伏发电站2的MAE降低了60.19%,光伏发电站3的MAE降低了58.92%。光伏发电站1的均方根误差(RMSE)降低了52.06%,光伏发电站2的RMSE降低了54.56%,光伏发电站3的RMSE降低了51.43%。实验结果表明,提出的结合SOMFCM和KELM的方法可显著提高预测准确性。