基于形态波动一致性偏移距离的滚动轴承剩余寿命预测方法
Residual life prediction method of rolling bearing based on morphology fluctuation conformance deviation distance作者机构:昆明理工大学信息工程与自动化学院昆明650500 昆明理工大学云南省先进装备智能控制及应用国际联合实验室昆明650500
出 版 物:《电子测量与仪器学报》 (Journal of Electronic Measurement and Instrumentation)
年 卷 期:2024年第38卷第3期
页 面:32-44页
核心收录:
学科分类:0711[理学-系统科学] 07[理学] 08[工学] 080401[工学-精密仪器及机械] 080203[工学-机械设计及理论] 0804[工学-仪器科学与技术] 080402[工学-测试计量技术及仪器] 0802[工学-机械工程] 080201[工学-机械制造及其自动化]
基 金:国家自然科学基金(62163020,62173168) 云南省重大科技专项项目(202202AD080005) 云南省基础研究计划项目(202101BE070001-055)资助
摘 要:针对滚动轴承完全失效阈值的设置多根据人工经验选取、退化轨迹适配忽略时间序列整体形态趋势变化的问题,提出一种基于形态波动一致性偏移距离的滚动轴承失效阈值设置与剩余寿命预测方法。首先,引入前向差分(FD)对振动信号进行预处理,并对处理后的信号计算均方根(RMS)值作为退化指标(DI);其次,融合双指数模型对DI曲线进行拟合确定最终参考轴承的完全失效阈值(TFT),降低TFT的设置偏差;最后,利用形态波动一致性偏移距离(MFCDD)计算DI曲线相似度,完成对测试轴承失效阈值的设置,并利用粒子滤波更新双指数模型完成滚动轴承的剩余使用寿命(RUL)预测。在XJTY-SY数据集上的实验结果表明,滚动轴承RUL预测的score得分较动态时间规整匹配方法、卷积神经网络-双向长短期记忆网络预测方法分别提升了82.97%和73.64%;在PHM2012数据集上的实验结果表明,滚动轴承RUL预测的score得分较动态时间规整匹配方法、卷积神经网络-双向长短期记忆网络预测方法、长短期记忆-自注意力机制预测方法分别提升了99.99%、60.65%和99.90%。