面向卫星遥感图像场景重建的神经辐射场方法综述
A Review of Neural Radiance Field Approaches for Scene Reconstruction of Satellite Remote Sensing Imagery作者机构:中国科学院空天信息创新研究院北京100190 中国科学院网络信息体系技术重点实验室北京100190 中国科学院大学北京100190 中国科学院大学电子电气与通信工程学院北京100190
出 版 物:《电子与信息学报》 (Journal of Electronics & Information Technology)
年 卷 期:2024年第46卷第5期
页 面:1582-1590页
核心收录:
学科分类:08[工学] 080401[工学-精密仪器及机械] 0804[工学-仪器科学与技术] 080402[工学-测试计量技术及仪器]
摘 要:随着高分辨率卫星遥感图像成为认知地理空间不可或缺的重要手段,卫星遥感图像在城市建图、生态监测和导航等领域发挥着日益重要的作用,利用卫星遥感图像进行地球表面大规模3维重建成为了计算机视觉和摄影测量领域的研究热点。神经辐射场(NeRF)利用可微渲染学习场景的隐式表示,在复杂场景新视图合成任务中实现了逼真的视觉效果,并在3维场景重建和渲染领域获得了极大的关注。近期的研究主要集中在利用神经辐射场技术,从卫星遥感图像中提取场景表示及其重建。面向卫星遥感图像的神经辐射场方法主要集中在光线空间优化、场景表示优化以及模型高效训练3方面。该文全面归纳了神经辐射场技术在卫星遥感应用中的最新进展。首先介绍神经辐射场技术的基本概念及相关数据集。然后提出一个面向卫星遥感图像的神经辐射场方法分类框架,用于系统性地回顾和整理该技术在卫星遥感领域的研究进展。接着详述了神经辐射场技术在实际卫星遥感场景应用中的相关成果。最后,基于当前研究所面临的问题和挑战进行分析和讨论,同时对未来的发展趋势和研究方向进行了展望。