应用集合卡尔曼滤波算法对土壤呼吸速率同化及NEP估算
Assimilation and NEP Estimation of Soil Respiration Rate by Ensemble Kalman Filter Algorithm作者机构:东北林业大学哈尔滨150040
出 版 物:《东北林业大学学报》 (Journal of Northeast Forestry University)
年 卷 期:2024年第52卷第7期
页 面:77-84,110页
学科分类:09[农学] 0903[农学-农业资源与环境]
基 金:中央高校基本科研业务费专项资金项目(2572022DT03) 东北林业大学碳中和专项科学基金项目(HFW220100054)
主 题:集合卡尔曼滤波算法 土壤温湿度 陆地生态系统碳循环综合模型 净生态系统生产力 土壤呼吸速率
摘 要:为了对净生态系统生产力(NEP)进行准确估算,以长白山通量观测站观测数据为基础,构建土壤温度、湿度耦合因子的更新模型(线性函数、指数函数、二次式函数),结合集合卡尔曼滤波算法(EnKF)获取高精度土壤呼吸速率数据,应用陆地生态系统碳循环综合模型(InTEC模型)准确估算NEP。结果表明:二次式模型的EnKF算法同化结果估算效果最好,决定系数(R^(2))为0.782,均方根误差为52.90 g·m^(-2)·a^(-1);指数模型EnKF算法同化结果估算值的R^(2)为0.755,均方根误差为56.47 g·m^(-2)·a^(-1);线性模型EnKF算法同化结果估算值的R^(2)为0.742,均方根误差为62.80 g·m^(-2)·a^(-1)。选取二次式模型优化后的土壤呼吸速率数据,InTEC模型模拟长白山通量观测站长时间序列净生态系统生产力的R^(2)为0.900,均方根误差为61.77 g·m^(-2)·a^(-1);InTEC模型模拟东北三省森林生态系统2003—2010年的净生态系统生产力年均值,由初始模拟的30.07 g·m^(-2)·a^(-1),经EnKF算法更新后提升到176.87 g·m^(-2)·a^(-1)。因此,采用EnKF更新土壤温度-湿度耦合因子获取的土壤呼吸速率数据,能够提高InTEC模型估算NEP的精度,为大区域尺度森林生态系统NEP估算提供技术支持。