基于改进YOLOv8n的复杂环境下柑橘识别
Recognizing citrus in complex environment using improved YOLOv8n作者机构:陕西理工大学机械工程学院汉中723001 陕西省工业自动化重点实验室汉中723001
出 版 物:《农业工程学报》 (Transactions of the Chinese Society of Agricultural Engineering)
年 卷 期:2024年第40卷第8期
页 面:152-158页
核心收录:
学科分类:1305[艺术学-设计学(可授艺术学、工学学位)] 13[艺术学] 082804[工学-农业电气化与自动化] 081104[工学-模式识别与智能系统] 08[工学] 0828[工学-农业工程] 0804[工学-仪器科学与技术] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程]
主 题:图像识别 深度学习 目标检测 YOLov8n Inner-IoU损失函数 复杂环境 柑橘
摘 要:针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在检测任务中泛化性弱和收敛速度慢的问题,使用Inner-CIoU损失函数加速边界框回归,提高模型检测性能。最后,在自建数据集上进行模型试验对比,试验结果表明,YOLOv8-MEIN模型交并比阈值为0.5的平均精度均值mAP_(0.5)值为96.9%,召回率为91.7%,交并比阈值为_(0.5~0.95)的平均精度均值mAP_(0.5~0.95)值为85.8%,模型大小为5.8 MB,参数量为2.87 M。与原模型YOLOv8n相比,mAP_(0.5)值、召回率、mAP_(0.5~0.95)值分别提高了0.4、1.0、0.6个百分点,模型大小和参数量相比于原模型分别降低了3.3%和4.3%,为柑橘的自动化采摘提供技术参考。