咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >大口径辅助阳极型辉光放电溅射源的设计与研究 收藏

大口径辅助阳极型辉光放电溅射源的设计与研究

Design and Research of Glow Discharge Excitation Source With Large Aperture Auxiliary Anode

作     者:万真真 武佳 施宁 王永清 刘少锋 沈懿璇 王海云 WAN Zhen-zhen;WU Jia;SHI Ning;WANG Yong-qing;LIU Shao-feng;SHEN Yi-xuan;WANG Hai-yun

作者机构:河北大学电子信息工程学院河北保定071002 北京科技大学国家材料服役安全科学中心北京100083 

出 版 物:《光谱学与光谱分析》 (Spectroscopy and Spectral Analysis)

年 卷 期:2024年第44卷第6期

页      面:1640-1647页

核心收录:

学科分类:081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 070302[理学-分析化学] 0703[理学-化学] 

基  金:国家自然科学基金项目(61440006) 辉光放电溅射源及其供能源的研制项目(横向课题20200018)资助 

主  题:辉光放电 高通量表征 辅助阳极 溅射速率 溅射坑形貌 

摘      要:辉光放电原子发射光谱分析技术可对金属样品表面进行沿深度方向的逐层分析与表征,具有溅射速率快、分析效率高、可大面积溅射的优点。另外,辉光放电等离子体能量较低,材料逐层溅射激发过程中不易引起材料本身组织结构的变化,能够实现沿样品深度方向逐层剥蚀制样。将辉光放电溅射源与扫描电镜、光谱分析检测仪器等联用,可作为金属材料高通量定量表征的有效手段。为了高通量地获取材料表面的成分分布信息,需要对材料表面在多尺寸、大面积溅射条件下进行辉光放电等离子体溅射。因此在传统辉光溅射源的基础上,改进了阳极筒结构,设计了4种直径为cm级的(15、20、30和40 mm)大口径阳极筒,并对其进行COMSOL数值模拟仿真和实际溅射效果研究。大尺寸溅射面可获得材料表面更为丰富的信息,但在相同溅射条件下,阳极口径增大也带来溅射速率下降、溅射面中心区域离子化率降低、影响溅射均匀性和坑型平整度等问题。为解决这些问题,设计了可应用于大口径直流辉光放电溅射源的辅助阳极结构,通过改变放电空间的电场分布情况调控等离子体分布,增强了阳极中心区域离子化率。详细阐述了辅助阳极结构的设计原理,并对传统阳极和辅助阳极进行了数值模拟仿真研究和实际溅射效果对比实验。结果表明增设辅助阳极对大口径溅射源溅射速率的提升效果明显,对阳极口径30 mm溅射源的溅射速率提升33%~48%,对阳极口径40 mm溅射源的溅射速率提升34%~57%。采用大口径辅助阳极型溅射源对紫铜样品进行了溅射激发,并用光学相干断层扫描仪(OCT)测试了溅射坑形貌,结果表明增设辅助阳极可有效改善溅射均匀性和坑型平整度。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分