联合数据增强的语义对比聚类
Semantic Contrastive Clustering with Federated Data Augmentation作者机构:江苏大学计算机科学与通信工程学院江苏镇江212013
出 版 物:《计算机研究与发展》 (Journal of Computer Research and Development)
年 卷 期:2024年第61卷第6期
页 面:1511-1524页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金项目(61906077,62102168,62176106,U1836220) 江苏省自然科学基金项目(BK20190838,BK20200888) 中国博士后科学基金项目(2020T130257,2020M671376) 江苏省博士后科学基金项目(2021K596C)
主 题:强数据增强 弱数据增强 对比学习 全局类别信息 聚类
摘 要:鉴于对比学习在下游任务中的优异表现,对比聚类的研究受到广泛关注.但是,大部分方法只采用一类简单的数据增强技术,尽管增强后的视图保留了原始样本的大部分特征信息,但也继承了语义信息和非语义信息相融交织的特性,在相似或相同的视图模式下,该特性限制了模型对语义信息的学习.有些方法直接将来源于同一样本的具有相同视图模式的2个数据增强视图组成正样本对,导致样本对语义性不足.为解决上述问题,提出基于联合数据增强的语义对比聚类方法,基于一强一弱2类数据增强,利用视图间的差异降低非语义信息的干扰,增强模型对语义信息的感知能力.此外,基于全局k近邻图引入全局类别信息,由同一类的不同样本形成正样本对.在6个通用的挑战性数据集上的实验结果表明该方法取得了最优的聚类性能,证实了所提方法的有效性和优越性.