基于三维卷积残差网络的无人机高光谱岩性分类
Unmanned Aerial Vehicle Hyperspectral Lithology Classification Using Threedimensional Convolutional Residual Networks作者机构:中国石油大学(华东)海洋与空间信息学院青岛266033
出 版 物:《遥测遥控》 (Journal of Telemetry,Tracking and Command)
年 卷 期:2024年第45卷第3期
页 面:114-122页
学科分类:12[管理学] 08[工学] 09[农学] 083002[工学-环境工程] 0830[工学-环境科学与工程(可授工学、理学、农学学位)] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 0804[工学-仪器科学与技术] 0903[农学-农业资源与环境] 0816[工学-测绘科学与技术] 081602[工学-摄影测量与遥感] 0835[工学-软件工程] 081102[工学-检测技术与自动化装置] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:岩性识别和分类是地质学、资源勘查等不可或缺的环节,高光谱遥感的兴起为岩性识别提供新的思路。利用机器学习挖掘岩石高光谱图像中的信息从而准确识别岩性,这具有重要的应用价值。目前用机器学习的方法实现岩石的高光谱影像分类研究中,缺少对空间和光谱信息的充分利用,因此本文使用了一种加入注意力机制的三维卷积残差网络结构,能够有效提取岩石高光谱图像的空间、光谱特征以及空谱联合特征。本实验利用无人机搭载高光谱传感器采集了10种不同类型的岩石样本影像,应用该算法对岩石高光谱图像进行分类。实验结果表明:该算法与传统机器学习算法SVM、RF和深度学习算法ResNet、3D CNN和SSRN相比具有更高的精度。