咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Automated Algorithms for Detec... 收藏

Automated Algorithms for Detecting and Classifying X-Ray Images of Spine Fractures

作     者:Fayez Alfayez 

作者机构:Department of Computer Science and InformationCollege of ScienceMajmaah UniversityAL-Majmaah11952Saudi Arabia 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2024年第79卷第4期

页      面:1539-1560页

核心收录:

学科分类:0810[工学-信息与通信工程] 1205[管理学-图书情报与档案管理] 0817[工学-化学工程与技术] 08[工学] 080203[工学-机械设计及理论] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 0835[工学-软件工程] 0714[理学-统计学(可授理学、经济学学位)] 0802[工学-机械工程] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:the appreciation to the Deanship of Postgraduate Studies and ScientificResearch atMajmaah University for funding this research work through the Project Number R-2024-922 

主  题:Feature reduction image classification X-ray images 

摘      要:This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for *** an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分