咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Anomaly Detection Algorithm of... 收藏

Anomaly Detection Algorithm of Power System Based on Graph Structure and Anomaly Attention

作     者:Yifan Gao Jieming Zhang Zhanchen Chen Xianchao Chen 

作者机构:Zhaoqing Power Supply Bureau of Guangdong Power Grid Co.Ltd.Zhaoqing526060China 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2024年第79卷第4期

页      面:493-507页

核心收录:

学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程] 

基  金:the Science and Technology Project of China Southern Power Grid Company,Ltd.(031200KK52200003) the National Natural Science Foundation of China(Nos.62371253,52278119) 

主  题:Anomaly detection transformer graph structure 

摘      要:In this paper, we propose a novel anomaly detection method for data centers based on a combination of graphstructure and abnormal attention mechanism. The method leverages the sensor monitoring data from targetpower substations to construct multidimensional time series. These time series are subsequently transformed intograph structures, and corresponding adjacency matrices are obtained. By incorporating the adjacency matricesand additional weights associated with the graph structure, an aggregation matrix is derived. The aggregationmatrix is then fed into a pre-trained graph convolutional neural network (GCN) to extract graph structure ***, both themultidimensional time series segments and the graph structure features are inputted into a pretrainedanomaly detectionmodel, resulting in corresponding anomaly detection results that help identify abnormaldata. The anomaly detection model consists of a multi-level encoder-decoder module, wherein each level includesa transformer encoder and decoder based on correlation differences. The attention module in the encoding layeradopts an abnormal attention module with a dual-branch structure. Experimental results demonstrate that ourproposed method significantly improves the accuracy and stability of anomaly detection.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分