A lightweight semantic segmentation algorithm integrating CA and ECA-Net modules
作者机构:School of Physics and Electronic EngineeringNorthwest Normal UniversityLanzhou 730070China
出 版 物:《Optoelectronics Letters》 (光电子快报(英文版))
年 卷 期:2024年第20卷第9期
页 面:568-576页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 080203[工学-机械设计及理论] 0835[工学-软件工程] 0802[工学-机械工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by the National Natural Science Foundation of China(No.61961037)
摘 要:Aiming at the existing semantic segmentation process due to the loss of pixel features and the complexity of calculating too many parameters,which leads to unsatisfactory segmentation results and too long time,this paper proposes a lightweight semantic segmentation algorithm based on the fusion of multiple *** algorithm is based on the pyramid scene parsing network(PSPNet).Firstly,Mobile Net V2 network is chosen as the feature extraction network to construct the lightweight network structure.