咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >AI/ML Enabled Automation Syste... 收藏

AI/ML Enabled Automation System for Software Defined Disaggregated Open Radio Access Networks:Transforming Telecommunication Business

作     者:Sunil Kumar 

作者机构:Institute for Communication SystemsUniversity of SurreyGuildfordGU27XHUK 

出 版 物:《Big Data Mining and Analytics》 (大数据挖掘与分析(英文))

年 卷 期:2024年第7卷第2期

页      面:271-293页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Artificial Intelligence(AI) Reinforcement Learning(RL) Open Radio Access Networks(O-RAN) Flexible Radio access network Intelligent Controller(FRIC) external Applications(xApps) Machine Learning(ML),sixth generation(6G) 

摘      要:Open Air Interface(OAI)alliance recently introduced a new disaggregated Open Radio Access Networks(O-RAN)framework for next generation telecommunications and *** disaggregated architecture is open,automated,software defined,virtual,and supports the latest advanced technologies like Artificial Intelligence(AI)Machine Learning(AI/ML).This novel intelligent architecture enables programmers to design and customize automated applications according to the business needs and to improve quality of service in fifth generation(5G)and Beyond 5G(B5G).Its disaggregated and multivendor nature gives the opportunity to new startups and small vendors to participate and provide cheap hardware software solutions to keep the market *** paper presents the disaggregated and programmable O-RAN architecture focused on automation,AI/ML services,and applications with Flexible Radio access network Intelligent Controller(FRIC).We schematically demonstrate the reinforcement learning,external applications(xApps),and automation steps to implement this disaggregated O-RAN *** idea of this research paper is to implement an AI/ML enabled automation system for software defined disaggregated O-RAN,which monitors,manages,and performs AI/ML-related services,including the model deployment,optimization,inference,and training.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分