基于孪生神经网络的楔形环连接结构预紧状态辨识
Pre-tightening state identification of a wedge-ring connection structure based on thesiamese neural network作者机构:中国工程物理研究院总体工程研究所四川绵阳621900
出 版 物:《振动与冲击》 (Journal of Vibration and Shock)
年 卷 期:2024年第43卷第8期
页 面:162-168页
核心收录:
学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程]
主 题:楔形环连接结构 孪生神经网络 状态辨识 特征可视化 定量表征
摘 要:楔形环连接结构由于其连接简单可靠、同时兼具节省空间及减重的优势,常被应用于鱼雷、航天飞行器等武器装备。针对楔形环连接结构预紧状态辨识方面存在的机理模型复杂、样本量小且类别不平衡的问题,提出了一种基于孪生神经网络模型的预紧状态辨识方法。为提高模型训练效率和效果,首先利用时频处理技术进行孪生神经网络模型特征增强,基于增强特征建立了3层孪生神经网络分类模型,实现楔形环预紧状态宏观分类。同时,为指导楔形环精密装配,通过特征可视化技术,深入分析了孪生神经网络训练过程特征聚类效果,并基于二维特征建立了预紧状态定量表征模型,引入目标状态聚类中心与接受域参量,用于实现楔形环连接结构预紧状态定量评估。通过试验验证了所提方法的有效性,该方法可为楔形环连接结构定量辨识提供新的技术途径和思路,具有一定工程应用价值。