基于MRCD估计的高维稳健因子分析方法及应用研究
High-Dimensional Robust Factor Analysis Method Based on MRCD Estimation and Its Application作者机构:暨南大学经济学院广东广州510632
出 版 物:《数理统计与管理》 (Journal of Applied Statistics and Management)
年 卷 期:2024年第43卷第2期
页 面:295-306页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:国家自然科学基金项目(12171203) 广东省自然科学基金项目(2022A1515010045) 中央高校基本科研业务费专项资金资助(23JNQMX21)
摘 要:因子分析是常用的多元统计分析方法之一,其思想是根据变量间的相关关系求出少数几个主因子,利用这些主因子描述原始变量。传统因子分析方法具有不稳健性,如果数据存在离群值会得到不合理的结果。虽然基于MCD估计的稳健因子分析具有良好的抗干扰性,但是MCD估计的精度会随着维数的增加而不断降低,在维数大于样本量的情形下,该方法甚至会失去有效性。为了对高维数据进行有效的因子分析,本文提出基于MRCD估计的高维稳健因子分析方法。模拟分析的结果表明,在高维数据下,相较于传统因子分析以及MCD稳健因子分析,MRCD高维稳健因子分析能够很好地抵抗离群值的影响,得出更为合理的结论。本文在实证分析部分对11个沿海省份进行研究,结果显示MRCD高维稳健因子模型能够有效地得出高维数据的因子分析结果;沿海各省份经济增长质量发展不平衡,上海、广东经济增长质量发展得较好。