咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Automating selective area elec... 收藏

Automating selective area electron diffraction phase identification using machine learning

作     者:M.Mika N.Tomczak C.Finney J.Carter A.Aitkaliyeva 

作者机构:Nuclear Engineering Program in Department of Materials ScienceUniversity of Florida100 Rhines HallGainesville32611FLUSA Department of Materials Science&EngineeringCase Western Reserve University2111 Martin Luther King Jr DrCleveland44106OHUSA 

出 版 物:《Journal of Materiomics》 (无机材料学学报(英文))

年 卷 期:2024年第10卷第4期

页      面:896-905页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:The funding for this work was provided by the U.S.Department of Energy,Office of Nuclear Energy Contract DEAC07-051D14517 The CNN work was partially supported by the National Science Foundation(award number 1552716) 

主  题:Selective area electron diffraction Machine learning Phase identification Metallic fuels Pu alloys 

摘      要:Selective area electron diffraction(SAED)patterns can provide valuable insight into the structure of a ***,the manual identification of collected patterns can be a significant bottleneck in the overall phase classification *** this work,we utilize the recent advances in computer vision and machine learning(ML)to automate the indexing of SAED *** performance of six different ML algorithms is demonstrated using metallic plutonium-zirconium *** most successful approach trained a neural network(NN)to make a classification of the phase and zone axis,and then utilized a second NN to synthesize multiple independent predictions of different tilts in a single sample to make an overall phase *** results demonstrate that automated SAED phase identification using ML is a viable route to accelerate materials characterization.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分