U-Net Based Dual-Pooling Segmentation of Bone Metastases in Thoracic SPECT Bone Scintigrams
U-Net Based Dual-Pooling Segmentation of Bone Metastases in Thoracic SPECT Bone Scintigrams作者机构:Key Laboratory of China’s Ethnic Languages and Information Technology of Ministry of Education Northwest Minzu University Lanzhou China School of Mathematics and Computer Science Northwest Minzu University Lanzhou China
出 版 物:《Journal of Computer and Communications》 (电脑和通信(英文))
年 卷 期:2024年第12卷第4期
页 面:60-71页
学科分类:1002[医学-临床医学] 100214[医学-肿瘤学] 10[医学]
主 题:Tumor Bone Metastasis Bone Scintigram Lesion Segmentation CNN Dual Pooling
摘 要:In order to enhance the performance of the CNN-based segmentation models for bone metastases, this study proposes a segmentation method that integrates dual-pooling, DAC, and RMP modules. The network consists of distinct feature encoding and decoding stages, with dual-pooling modules employed in encoding stages to maintain the background information needed for bone scintigrams diagnosis. Both the DAC and RMP modules are utilized in the bottleneck layer to address the multi-scale problem of metastatic lesions. Experimental evaluations on 306 clinical SPECT data have demonstrated that the proposed method showcases a substantial improvement in both DSC and Recall scores by 3.28% and 6.55% compared the baseline. Exhaustive case studies illustrate the superiority of the methodology.