咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于Transformer的街道停车位数据补全和预测 收藏

基于Transformer的街道停车位数据补全和预测

Data Completion and Prediction of Street Parking Spaces Based on Transformer

作     者:林滨伟 於志勇 黄昉菀 郭贤伟 LIN Binwei;YU Zhiyong;HUANG Fangwan;GUO Xianwei

作者机构:福州大学计算机与大数据学院福州350108 福建省网络计算与智能信息处理重点实验室(福州大学)福州350108 

出 版 物:《计算机科学》 (Computer Science)

年 卷 期:2024年第51卷第4期

页      面:165-173页

学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:国家自然科学基金(61772136) 福建省引导性项目(2020H0008) 福建省中青年教师教育科研项目(JAT210007) 

主  题:街道停车位 数据补全 时序预测 机器学习 深度学习 

摘      要:随着城市汽车数量的持续增长,街道停车难已经成为一个热点问题。解决街道停车问题的关键在于准确预测街道未来的停车位信息。移动群智感知方式(CrowdSensing)通过在车辆上安装声呐以感知路边的停车位情况,是一种低成本、高效益的感知停车位的方式,然而这种方式感知的停车位数据在时间上存在高稀疏性问题,传统模型无法直接用于预测。针对此问题,提出了一种基于Transformer的停车位序列补全和预测网络,此网络通过编码器生成缺失停车位序列的记忆,进而解码器以自回归的方式补全停车位序列中缺失的部分,同时预测出未来的停车位信息。实验结果表明,所提方法在两个高缺失的街道停车位数据集上的补全和预测效果都优于传统的机器学习和深度学习方法。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分