一种小样本数据驱动的雷达复合干扰轻量化感知网络
A small sample data-driven radar compound jamming lightweight perception network作者机构:空军工程大学防空反导学院西安710051 西安黄河机电有限公司西安710043
出 版 物:《北京航空航天大学学报》 (Journal of Beijing University of Aeronautics and Astronautics)
年 卷 期:2024年第50卷第3期
页 面:1005-1014页
核心收录:
学科分类:11[军事学] 080904[工学-电磁场与微波技术] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 110503[军事学-军事通信学] 0710[理学-生物学] 0810[工学-信息与通信工程] 1105[军事学-军队指挥学] 1104[军事学-战术学] 082601[工学-武器系统与运用工程] 081105[工学-导航、制导与控制] 0826[工学-兵器科学与技术] 081001[工学-通信与信息系统] 0836[工学-生物工程] 081002[工学-信号与信息处理] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:雷达干扰感知 小样本数据驱动 复合干扰 深度学习 轻量级网络
摘 要:基于深度学习的雷达干扰感知技术能精确感知各类雷达干扰类型,但需预先构建大规模且完备的训练样本,数据集构建工作量大、难度高,同时存在网络模型参数量较大、计算复杂度高的问题,导致在实际平台中难以应用。针对此问题,提出一种小样本数据驱动的雷达复合干扰轻量化感知网络,结合计算机视觉领域的“目标检测思想建立干扰感知网络,利用雷达干扰时频分布数据提取多尺度特征图,预置锚框进行回归与分类,使用分组卷积与Ghost卷积对大参数量、高计算量的网络结构进行轻量化改进。实验结果表明:只需小规模的多种单一干扰模式样本,即可实现对单一干扰模式、两两复合模式及3类复合模式的灵活感知,在低干噪比条件下保持较高感知性能的同时大幅压缩模型的参数量与运算量。