咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Highly Efficient Aligned Ion‑C... 收藏

Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries

作     者:Yongbiao Mu Shixiang Yu Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng Yongbiao Mu;Shixiang Yu;Yuzhu Chen;Youqi Chu;Buke Wu;Qing Zhang;Binbin Guo;Lingfeng Zou;Ruijie Zhang;Fenghua Yu;Meisheng Han;Meng Lin;Jinglei Yang;Jiaming Bai;Lin Zeng

作者机构:Shenzhen Key Laboratory of Advanced Energy StorageSouthern University of Science and TechnologyShenzhen 518055People’s Republic of China Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen 518055People’s Republic of China SUSTech Energy Institute for Carbon NeutralitySouthern University of Science and TechnologyShenzhen 518055People’s Republic of China Department of Mechanical and Aerospace EngineeringHong Kong University of Science and TechnologyKowloon 997077Hong Kong Special Administrative Region of ChinaPeople’s Republic of China HKUST Shenzhen-Hong Kong Collaborative Innovation Research InstituteFutianShenzhenPeople’s Republic of China 

出 版 物:《Nano-Micro Letters》 (纳微快报(英文版))

年 卷 期:2024年第16卷第5期

页      面:102-119页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0702[理学-物理学] 

基  金:This work was financially supported by Stable Support Plan Program for Higher Education Institutions(20220815094504001) Shenzhen Key Laboratory of Advanced Energy Storage(ZDSYS20220401141000001) This work was also financially supported by the Shenzhen Science and Technology Innovation Commission(GJHZ20200731095606021,20200925155544005) the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083)。 

主  题:All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation 

摘      要:Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分