基于语义增广与YOLOv8的钢轨表面缺陷检测方法
Rail surface defect detection based on semantic augmentation and YOLOv8作者机构:重庆交通大学交通运输学院重庆400074 郑州大学黄河实验室河南郑州450001
出 版 物:《铁道科学与工程学报》 (Journal of Railway Science and Engineering)
年 卷 期:2024年第21卷第9期
页 面:3864-3875页
学科分类:08[工学] 0814[工学-土木工程] 082301[工学-道路与铁道工程] 0823[工学-交通运输工程]
基 金:重庆市教委科学技术研究项目(KJQN202100708) 重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0908)
主 题:傅里叶变换 语义增广 钢轨表面缺陷 实例分割 YOLOv8
摘 要:针对钢轨表面缺陷检测中存在的表面反光导致缺陷不明显、样本数量少、检测实时性要求高、检测精度偏低等问题,提出一种融合语义增广与YOLO模型的钢轨表面缺陷检测方法。以RSDDs数据集为例,截取钢轨表面缺陷区域,采用傅里叶变换提取缺陷语义特征,并结合原始图像进行语义增广,构建了表面缺陷增广数据集;基于YOLOv8检测模型,增加了融合低层特征的检测头,构建了面向钢轨表面缺陷实例分割的检测模型;通过模型训练与测试,对比图像语义增广、YOLOv8模型改进在钢轨表面缺陷检测、语义分割精度上的效果。研究结果表明:傅里叶域提取语义特征能够抑制表面反光影响,图像的语义增广和YOLOv8模型改进的策略均能够有效提升钢轨表面缺陷检测的准确率和召回率,语义增广在检测精度和实例分割精度的mAP50指标分别提高2.1和3.0个百分点,YOLOv8模型改进策略在检测精度和实例分割精度的mAP50指标分别提高1.0和1.4百分点;结合语义增广与模型改进,将钢轨表面缺陷的检测精度和分割精度的mAP50指标分别提升至0.937和0.934,在mAP50~95指标上分别达到11.4和11.9个百分点的提升,显著提升了钢轨表面缺陷检测的准确性,同时保持了较好的实时性。研究结果为进一步提升钢轨表面缺陷检测的准确性和效率提供解决思路,为铁路基础设施的数字化、智能化运维管理提供参考。