咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Multispectral point cloud supe... 收藏

Multispectral point cloud superpoint segmentation

作     者:WANG QingWang WANG MingYe ZHANG ZiFeng SONG Jian ZENG Kai SHEN Tao GU YanFeng 

作者机构:Faculty of Information Engineering and AutomationKunming University of Science and TechnologyKunming 650500China Yunnan Key Laboratory of Computer Technologies ApplicationKunming 650500China School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin 150001China 

出 版 物:《Science China(Technological Sciences)》 (中国科学(技术科学英文版))

年 卷 期:2024年第67卷第4期

页      面:1270-1281页

核心收录:

学科分类:0810[工学-信息与通信工程] 08[工学] 081002[工学-信号与信息处理] 

基  金:supported by the Youth Project of the National Natural Science Foundation of China(Grant No.62201237) the Yunnan Fundamental Research Projects(Grant Nos.202101BE070001-008 and202301AV070003) the Youth Project of the Xingdian Talent Support Plan of Yunnan Province(Grant No.KKRD202203068) the Major Science and Technology Projects in Yunnan Province(Grant No.202202AD080013) 

主  题:multispectral point cloud superpoint segmentation over-segmentation spatial-spectral joint metric 

摘      要:The multitude of airborne point clouds limits the point cloud processing *** are grouped based on similar points,which can effectively alleviate the demand for computing resources and improve processing ***,existing superpoint segmentation methods focus only on local geometric structures,resulting in inconsistent spectral features of points within a *** feature inconsistencies degrade the performance of subsequent ***,this study proposes a novel Superpoint Segmentation method that jointly utilizes spatial Geometric and Spectral Information for multispectral point cloud superpoint segmentation(GSI-SS).Specifically,a similarity metric that combines spatial geometry and spectral information is proposed to facilitate the consistency of geometric structures and object attributes within segmented *** the formation of the primary superpoints,an intersuperpoint pointexchange mechanism that maximizes feature consistency within the final superpoints is *** are conducted on two real multispectral point cloud datasets,and the proposed method achieved higher recall,precision,F score,and lower global consistency and feature classification *** experimental results demonstrate the superiority of the proposed GSI-SS over several state-of-the-art methods.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分