The tangential k-Cauchy-Fueter type operator and Penrose type integral formula on the generalized complex Heisenberg group
作者机构:Department of MathematicsZhejiang International Studies UniversityHangzhou 310023China Department of MathematicsZhejiang University of Science and TechnologyHangzhou 310023China
出 版 物:《Applied Mathematics(A Journal of Chinese Universities)》 (高校应用数学学报(英文版)(B辑))
年 卷 期:2024年第39卷第1期
页 面:181-190页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by National Nature Science Foundation in China(12101564,11971425,11801508) Nature Science Foundation of Zhejiang province(LY22A010013) Domestic Visiting Scholar Teacher Professional Development Project(FX2021042)
主 题:the generalized complex Heisenberg group the tangential k-Cauchy-Fueter type operator Penrose-type integral formula
摘 要:The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,*** this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex *** investigate quaternionic analysis on the generalized complex *** also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.