基于多光谱图像角度融合测定库尔勒香梨理化指标
Physical and Chemical Indexes Were Determined Based on Multispectral Image Angle Fusion作者机构:塔里木大学机械电气化工程学院新疆阿拉尔843300 自治区教育厅普通高等学校现代农业工程重点实验室新疆阿拉尔843300
出 版 物:《光谱学与光谱分析》 (Spectroscopy and Spectral Analysis)
年 卷 期:2024年第44卷第3期
页 面:649-655页
核心收录:
学科分类:07[理学] 070302[理学-分析化学] 0703[理学-化学]
基 金:国家自然科学基金项目(11964030) 塔里木大学现代农业工程重点实验室项目(TDNG2020202)资助
摘 要:基于多光谱图像角度融合,提出了一种库尔勒香梨快速无损检测的方法。以库尔勒香梨为研究对象,应用多光谱成像采集系统,以10°为间隔,获取了相对方位角为10°~90°内的多光谱图像。使用ENVI5.1软件进行多光谱图像角度融合并提取感兴趣区域(ROI),获得多光谱数据。对光谱反射率、波段和相对方位角进行了皮尔逊相关性分析,发现波段和相对方位角都对光谱反射率呈极显著相关性,且相对方位角相关系数为0.1大于波段相关系数0.053,有必要在建模过程中加入相对方位角因素。采用标准正态变量变换(SNV)、均值中心化变换(MC)、卷积平滑处理(S_G)和归一化处理(Nor)等预处理方法,选用偏最小二乘回归(PLSR)建立全波段检测模型,通过校正集相关系数(R_(c))、预测集相关系数(R_(p))、校正集均方根误差(RMSEC)和预测集均方根误差(RMSEP)对模型的效果进行评价,对比探究特征角度下和角度融合下库尔勒香梨关键指标的模型检测效果。结果表明:采用角度融合处理后,所建立的PLSR和SVM模型预测效果都有显著提升。预测库尔勒香梨含水率最优模型为采用角度融合的偏最小二乘回归模型(AF-PLSR),其R_(c)为0.936, RMSEC为0.298,R_(p)为0.901, RMSEP为0.285;预测库尔勒香梨硬度和糖度的最优模型为以角度融合的支持向量机模型(AF-SVM),R_(c)分别为0.894、 0.905, RMSEC为0.527、 0.376;R_(p)为0.830、 0.901, RMSEP为0.532、 0.379。角度融合将不同角度下的光谱数据结合在一起,获得了比单一角度更加丰富的信息,得到了更加完善的光谱。所建立的检测模型精度更高。结果证明:基于多光谱图像角度融合技术预测库尔勒香梨的含水率、硬度和糖度是可行的。为提高多光谱无损检测精度和高光谱无损检测精度提供了一种新的思路。